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Abstract. Using the local-density approximation, calculating the Hellmann-Feynman forces, applying the
direct method and deriving the phonon dispersion relations, the stability of the perovskite-like structures
of MgSiO3 at T = 0 have been studied. The cubic Pm3̄m phase shows a dispersion-less soft phonon branch
spreading from the R to M points of the cubic Brillouin zone. This soft branch persists up to high pressures
of 150 GPa. The low-symmetry phases I4/mcm and Imma, P4/mbm can be considered as a result of the
soft mode condensation at the M and R points, respectively. These phases prove to be unstable at T = 0.
The experimentally observed Pmnb phase is a consequence of the intersection of Imma and P4/mbm space
groups. Thus, it can be regarded as a simultaneous condensation of two soft modes: one at the M and
a second at the R high-symmetry points of the cubic Brillouin zone. The phonon dispersion relations of
Pmnb show that this phase is stable and its optical phonons appear above 4.0 THz only.

PACS. 63.20.-e Phonons in crystal lattices – 71.15.Mb Density functional theory, local density
approximation – 91.35.-x Earth’s interior structure and properties

1 Introduction

Computer programs based on the density functional the-
ory (DTF) provide a powerful tool with which one is now
able to optimize a predetermined crystalline structure and
to calculate its ground-state energy. However, a search for
an unknown stable crystalline structure still remains an
open question. Usually one starts the calculations by as-
suming a hypothetical high-symmetry structure. Such a
structure is defined as a supercell with periodic boundary
conditions. One way is to optimize this supercell in P1
symmetry allowing the adjustment of the lattice param-
eters and atomic position. Such optimization is compu-
tationally very costly, since the large number of the free
parameters which may vary in the minimization process,
is equal to the number of atoms in the supercell times
three.

In this article we apply another procedure to search
for a crystal structure. One starts the DFT calculations
from a hypothetical, high-symmetry structure making use
of the symmetry imposed by the crystallographic space
group. Application of the symmetry elements usually dras-
tically reduces the number of free-parameters. Then, for
the structure optimized within the space group one cal-
culates the phonon dispersion relations. If all phonon fre-
quencies ω2(k, j) are positive the structure is stable. How-
ever, often this is not the case. If it appears that some
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phonon frequencies are imaginary, i.e. ω2(k, j) < 0, then
the system is unstable. The most negative mode ω2(k, j)
is called the soft mode. The wave vector k, more precisely
the irreducible star of the wave vector {k}, and the polar-
ization vectors e(k, j) of the soft mode components define
the lattice distortions and the atomic shifts, which must
be performed in order to reach the stable configuration.
Moreover, the irreducible representation of the soft mode
Γs, which is uniquely defined by the soft mode wave vec-
tors and polarization vectors, reduces the space group Go

of the high-symmetry phase to a space subgroup G of the
low-symmetry phase. This symmetry reduction is unique
only if the soft mode is represented by the one-dimensional
irreducible representation. More frequently, however, the
Γs has a higher dimension, and then a subduction with
Γs leads to a few low-symmetry space groups G1, G2, . . .
Gn, where n is usually of order 2 to 6. Such symmetry
analysis suggests the list of space subgroups within which
the studied crystalline structure should be optimized. It
also assures us that the stable configuration cannot occur
within other space groups. (One may, however, start the
calculations from another hypothetical structure.) Again,
to be sure that the resulting structure is stable, all frequen-
cies of the phonon dispersion relations should be positive.
The above procedure considerably reduces the phase space
of the possible structures to be searched. In comparison
to a single minimization in the P1 structure, in this ap-
proach the number of tested structures has increased, but
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the number of free-parameters involved in the optimiza-
tion procedures are much smaller. Moreover, the struc-
tures exhibiting soft modes become promising candi-
dates for the disordered structures stable at elevated
temperature. The described procedure is analogous to
the symmetry considerations in the Landau theory of
phase transitions, where two crystalline phases are related
by the group-subgroup relationship. Below, we illustrate
the above procedure considering MgSiO3 perovskite-like
structures.

It is believed that magnesium silicate MgSiO3 (with
about 10% of the Mg atoms substituted by Fe) is the
one of the major constituent components of the Earth’s
lower mantle. This statement follows from the large cosmic
abundance of the elements Mg, Si and O, mass, inertia and
density of the Earth and from measurements of speed and
polarization of seismic elastic waves. The MgSiO3 proper-
ties and phase transitions determine much of the Earth’s
density distribution and thermal properties [1]. Convec-
tion in the upper and lower mantles caused by temper-
ature gradients is another topic under debate [2,3]. The
comprehensive description of the physics and chemistry
of the deep interior of the Earth, the composition of the
mantle and core, the mineral thermodynamics, equation
of states and elasticity, the novel physical phenomena at
ultrahigh pressures, the high pressure electronic and mag-
netic properties and the theory of minerals at high pres-
sure including the first-principle approach can be found in
the excellent reviews in [4].

MgSiO3 exists in many crystallographic phases. It is
believed that under high-pressure MgSiO3 exists in the
mantle as a distorted perovskite structure of Pbnm sym-
metry (equivalent to Pmnb [5]). The Pbnm phase cannot
be obtained under normal conditions. It is usually grown
at high pressure at about 23 GPa and high temperature
[6,7], then recovered by lowering the temperature and
subsequently releasing the pressure. On heating at am-
bient pressure to only modest temperature (150 ◦C), the
crystalline MgSiO3 gradually transforms to a low-density
amorphous phase.

The MgSiO3 perovskite has been already studied
within the ab initio approach. In reference [8] the periodic
Hartree-Fock self-consistent field method has been used
to describe the equation of states in MgSiO3 perovskite.
An ab initio constant-pressure molecular-dynamics tech-
nique has been used [9] to investigate zero-temperature
behaviour of MgSiO3 perovskite up to the pressures which
exceed the highest values reached in the Earth’s man-
tle. These studies confirm that MgSiO3 remains in the
orthorhombically distorted perovskite phase (Pbnm) up
to the highest pressure. Hemley et al. [10] have calculated
the phonon dispersion curves for MgSiO3 in Pm3̄m cubic
symmetry, and have found soft modes at R and M-points
of the Brillouin zone. These calculations used a crystal
charge density constructed from the shell-stabilized ions,
whose wave functions were calculated from the Hartree-
Fock theory. The short-range forces were calculated in
the pairwise-additive approximation from modified elec-
tron gas theory. Stixrude et al. [11] have calculated the

phonon dispersion curves of CaSiO3 perovskite, using the
linearized augmented plane waves method and the linear
response approach to the cubic Pm3̄m phase, and found
soft modes at the R and M points, and the Born effec-
tive charge tensors. Hemmati et al. [12] have studied the
phase transition from the crystal to the amorphous state
in MgSiO3 and CaSiO3 by the rigid-ion pair potential.
The phonon dispersion curves of the MgSiO3 were not
shown but the dispersion curves of the similar CaSiO3 in
the tetragonal phase P4mm exhibit a flat, soft mode along
a line connecting M and A high-symmetry points in the
tetragonal Brillouin zone. Warren and Ackland [13] have
used the density-functional theory and the direct method
to derive the phonon frequencies at Γ , X, M, and R high-
symmetry points (with respect to the simple cubic Bril-
louin zone) of the orthorhombic (Pbnm) and two hypo-
thetical phases: cubic (Pm3̄m) and tetragonal (I4/mcm).
They have shown that the orthorhombic Pbnm phase is
stable and suggested that the tetragonal phase I4/mcm
may exist at higher temperature in the lower mantle.
Unfortunately, the ab initio phonon dispersion relations
of the stable orthorhombic Pbnm structure have not yet
been calculated. Winkler and Dove [14] have performed
the molecular dynamics simulation using the short-range
interatomic potentials and conventional Ewald summa-
tions with parameters taken from reference [15]. The ther-
modynamic properties and the phonon density of states
have been extracted using a semiclassical approximation.
Chaplot et al. [16] carried out a molecular dynamics simu-
lation at high temperature and pressures using an empir-
ical potential. At temperatures substantially higher than
the mantle temperature, the simulations reveal an or-
thorhombic to cubic phase transition accompanied by a
sharp increase in diffusion of the oxygen atoms.

This work considers a series of perovskite structures
which are indicated by the soft modes found in the hy-
pothetically perfectly cubic perovskite phase of MgSiO3.
The possible lattice distortions of the perovskite struc-
tures have been described in reference [17]. Using the
concept of the Landau theory of phase transitions, the
symmetry confinement imposed by the group-subgroup re-
lationships, then the density-functional theory and the di-
rect method to calculate harmonic phonons, we study the
stability of the distorted perovskite structures predicted
by the soft modes. We consider five structures of symme-
try Pm3̄m, I4/mcm, Imma, P4/mbm and Pmnb. To check
the stability of the considered structures we calculate the
phonon dispersion curves for each phase. Imaginary fre-
quencies (ω2(k, j) < 0), shown as negative values in the
figures, represent the soft modes. The wave vector and
the irreducible representation of the soft mode lead in each
case to lower symmetry phases, which might be candidates
for a stable phase. We would like to stress, however, that
the soft modes appearing in this work, are used only as
hints which tell us in which direction the atoms should be
distorted in order to find the stable minimum. This proce-
dure considerably reduces the phase space to be searched.
The existence of a crystalline phase with a real soft mode,
is a topic going beyond the aim of this article. We have
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Table 1. Input data used in the ab initio calculations of magnesium silicate MgSiO3: orientation of the studied unit cells with
respect to the cubic unit cell, supercell’s basic vectors, and parameters for ab initio calculations.

Space group Pm3̄m (O1
h) I4/mcm (D18

4h) Imma (D28
2h) P4/mbm (D5

4h) Pmnb (D16
2h)

Orientation ac = ao(1, 0, 0) at = ao(1, 1̄, 0) ao = ao(1, 0, 1) aT = ao(1, 1̄, 0) aO = ao(0, 0, 2)

of unit cell ac = ao(0, 1, 0) bt = ao(1, 1, 0) bo = ao(0, 2, 0) bT = ao(1, 1, 0) bO = ao(1, 1, 0)

cc = ao(0, 0, 1) ct = ao(0, 0, 2) co = ao(1, 0, 1̄) cT = ao(0, 0, 1) cO = ao(1̄, 1, 0)

Supercell 2× 2× 2
√

2×
√

2× 1
√

2× 1×
√

2
√

2×
√

2× 2
√

2×
√

2× 1

Supercell’s a = 2ac a = at + bt a = ao − co a = aT + bT a = cO

basic vectors b = 2bc b = −at + bt b = bo b = −aT + bT b = aO + bO

c = 2cc c = ct c = ao + co c = 2cT c = −aO + bO

Number of atoms 40 40 40 40 40

k-mesh 2× 2× 2 2× 2× 2 2× 2× 2 2× 2× 2 2× 2× 2

Number of k-points 4 6 6 6 6

found that the orthorhombic Pmnb phase is stable and
that it is a result of simultaneous condensation of two soft
modes, one belonging to the M-point of the cubic Brillouin
zone, a second corresponding to the R-point. The unit cell
of Pbnm phase contains 20 atoms. For this phase we have
calculated, to the best of our knowledge for the first time,
the phonon dispersion curves and the phonon density of
states, the main characteristics of the crystal dynamics.

2 Method

The ab initio calculations of MgSiO3 crystals are per-
formed using the pseudopotential method within the
local-density approximation (LDA) as implemented in the
VASP package [18,19] and with the ultrasoft pseudopo-
tentials provided by VASP. The pseudopotentials for Mg,
Si and O atoms represent s2p0, s2p2, and s2p4 electron
configurations, respectively. For different phases we use
supercells of slightly different shapes, but their forms are
close to the 2× 2× 2 cubic supercell. Each supercell con-
tains 40 atoms. This choice guarantees that in each case
the same neighbours are included into the dynamical ma-
trix. A plane-wave basis set with 500 eV cutoff is used to
expand the electronic wave functions at special k-points
generated by a 2× 2× 2 Monkhurst-Pack k-mesh, except
the elongated 1 × 1 × 8 supercell, for which a 4 × 4 × 1
k-mesh has been used.

The phonons are determined by the direct method [20–
22], using the optimized supercells subject to symmetry
constraints as given in Tables 1 and 2. The Hellmann-
Feynman forces are computed for all n independent dis-
placements required by the symmetry of the unit cell as
listed in Table 3. The displacement amplitudes are of the
order of 0.5% of the lattice constant. The displaced con-
figurations generate n × 3 × 40 = 120n components of
Hellmann-Feynman forces. The number of force constant
matrices and number of independent parameters, as well
as the number of coordination shells over which the force
constants are spread, are also given in Table 3. Using
the symmetry elements of the relevant space group we

establish the symmetry of the so-called cummulant force
constants [21] and the related number of independent pa-
rameters. Using the Phonon program [22] the force con-
stant parameters are fitted to Hellmann-Feynman forces
by the singular value decomposition algorithm, which si-
multaneously provides the least-square solution.

Independent of the range of interaction, the direct
method gives exact phonon frequencies at the wave vectors
commensurate with the size of the supercell, provided the
supercell shape guarantees a complete list of neighbours
of each coordination shell such that the dynamical matrix
conserves its symmetry. All structures considered in this
article satisfy this condition. In Table 2 we list the de-
tails of these structures. In particular we show the special
wave vectors at which phonon frequencies are obtained
exactly for a given supercell. Since in MgSiO3 the magni-
tude of the force constants diminishes with distance rather
rapidly, all phonon branches, being a symmetry controlled
interpolation between special wave vectors, should be
relatively well reproduced.

In MgSiO3 the macroscopic electric field splits the in-
frared active optical modes to transverse (TO) and lon-
gitudinal (LO) components. The TO phonon frequencies
are calculated within the direct method. The LO modes
depend on the non-analytical term [23], which generally
depends on the ratio of the effective charge tensor to the
square root of the dielectric constant Z∗i /

√
ε∞. Further,

we treat the effective charges as point charges. Using the
direct method the LO modes can be estimated from an
elongated supercell [24], since such a supercell provides
exact phonons inside the Brillouin zone as well. For that
we build a 1 × 1 × 8 supercell of the cubic Pm3̄m sym-
metry elongated along the z direction with 40 atoms. Its
optimized ground state energy and the lattice constants
are the same as in the optimized 2 × 2 × 2 cubic super-
cell. We calculate the Hellmann-Feynman forces and de-
rive the dispersion curves along the Γ–Z direction. This
supercell provides correct phonon frequencies at four wave
vectors: (0, 0, 1

8 ), (0, 0, 1
4 ), (0, 0, 3

8 ), (0, 0, 1
2 ). The phonon

frequencies at these wave vectors are used to extrapo-
late the LO branch towards the Γ point and to estimate
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Table 2. Data obtained from the ab initio calculations of magnesium silicate MgSiO3: wave vectors at which the exact phonon
frequencies follow from the direct method, optimized zero-pressure lattice constants, difference ∆E = E − Ec of ground state
energy in eV per cubic unit cell (Z = 1) with respect to the cubic ground state energy Ec, reduced unit cell volumes V/Z
corresponding to original perovskite (Z = 1) unit cell, optimized zero-pressure structural parameters. Experimental lattice
constants of Pmnb orthorhombic phase are a = 6.9083(8), b = 4.9313(4), c = 4.7787(4), and measured atomic positions are
Si:(0, 0, 1/2), Mg:(0.5560(1), 1/4, 0.5141(1)), O1:(0.4660(2), 1/4, 0.1028(2)), O2:(0.2014(4), 0.5531(4), 0.1961(1)) [29]. (see also
[30,31]).

Space group Pm3̄m (O1
h) I4/mcm (D18

4h) Imma (D28
2h) P4/mbm (D5

4h) Pmnb (D16
2h)

Exact phonons at Γ , X, M, R Γ , X, Z Γ , X, R Γ , M, Z, A Γ , T

Lattice constants a = 3.4596 a = 4.8242 a = 4.9037 a = 4.8194 a = 6.8062

in Å c = 6.9224 b = 6.8626 c = 3.4663 b = 4.8751

c = 4.7421 c = 4.7093

Z 1 2 2 2 4

∆E 0.0 −0.7674 −1.1757 −0.7611 −1.4269

Volume V/Z in Å 41.4073 40.2701 38.8954 40.2552 39.0647

Atomic positions Si:(0, 0, 0) Si:(0, 0, 0) Si:(0, 0, 1
4
) Si:(0, 0, 1

2
) Si:(0, 0, 1

2
)

Mg:( 1
2
, 1

2
, 1

2
) Mg:( 1

2
, 0, 3

4
) Mg:(0, 1

4
, u) Mg:( 1

2
, 0, 0) Mg:(u, 1

4
, v)

O:( 1
2
, 1

2
, 0) O1:(0, 0, 3

4
) O1:(0, 1

4
, v) O1:(0, 0, 0) O1:(t, 1

4
, w)

O2:(u, v, 0) O2:( 1
4
, t, 1

4
) O2:(u, v, 1

2
) O2:(x, y, z)

u = 0.1819 u = 0.4688 u = 0.3182 u = 0.5596

v = 1
2 − u v = 0.8817 v = 1

2 − u v = 0.5149

t = 0.0625 t = 0.4623

w = 0.1083

x = 0.1992

y = 0.5559

z = 0.1935

Table 3. Displacements used to generate Hellmann-Feynman (HF) forces, number of Hellmann-Feynman force components,
number of coordination shells within the supercell, number of the force constant matrices and number of independent parameters
appearing in the force constant matrices used in the calculations.

Space group Pm3̄m (O1
h) I4/mcm (D18

4h) Imma (D28
2h) P4/mbm (D5

4h) Pmnb (D16
2h)

Displacements Mg: z Mg: x,z Mg: x,y,z Mg: x,z Mg: x,y,z

to generate Si: z Si: x,z Si: x,y,z Si: x,z Si: x,y,z

HF forces O: x,z O1: x,z O1: x,y,z O1: x,z O1: x,y,z

O2: x,y,z O2: x,y,z O2: x,y,z O2: x,y,z

HF forces 480 1080 1440 1080 1440

Coordinat. shells 9 20 26 19 37

Force constants 22 45 63 44 78

Independ. param. 49 228 382 210 616

the ratios of the point effective charges to the square root
of the dielectric constant, which are Z∗Mg/

√
ε∞ = 1.0,

Z∗Si/
√
ε∞ = 2.0 and Z∗O/

√
ε∞ = −1.0. Here, the ratio be-

tween effective charges is assumed to be the same as the
ratio between nominal static charges. We use these ratios
for all selected structures. We remark, however, that all
studied soft modes are not influenced by the LO/TO split-
ting. Hence, the stabilities of the considered structures do
not depend on the effective charges.

3 Cubic perovskite structure of magnesium
oxide

We start the calculation from the cubic perovskite
MgSiO3 phase. Therefore, we have constructed a 2×2×2
supercell of Pm3̄m symmetry, optimized its lattice con-
stant, calculated the Hellmann-Feynman forces and de-
rived the phonon dispersion curves along high-symmetry
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Fig. 1. Phonon dispersion relations of MgSiO3 for the cubic
perovskite Pm3̄m phase.

directions. The results are shown in Figure 1. Out of
15 phonon branches several are soft. At the R: (1

2 ,
1
2 ,

1
2 )

point the triply degenerate mode R+
4 [25] (or k13τ

9 [26])
has the lowest frequency. The mode M+

3 [25] (or k11τ
3

[26]) at M: (1
2 ,

1
2 , 0) point has practically the same fre-

quency. A phonon branch along the [1
2 ,

1
2 , ζ] direction re-

mains dispersion-less and soft between R and M points.
The flatness of this dispersion curve is caused by the small
value of the latteral oxygen-oxygen force constant at the
lattice constant a distance, which amounts to only 0.6% of
the on-site oxygen force constant. There are, of course, no
symmetry requirements which force this dispersion curve
to be flat. We add that a similar relatively flat disper-
sion curve occurs in other perovskites like SrTiO3, where
the flatness along the R–M direction has been confirmed
experimentally [27].

In cubic MgSiO3 we observe another soft mode at the
Γ point, shown in Figure 1. Its symmetry is T1u(TO), and
its frequency i3.95 THz. From the symmetry point of view,
this soft mode might, in principle, induce a P4mm phase.
The P4mm phase could become ferroelectric. But, since
the T1u(TO) soft mode frequency is considerably higher
than the frequencies of modes arising from the R or M
points, the T1u mode is expected not to cause any effect.

3.1 The cubic perovskite structure under pressure

The phonon dispersion curves of the cubic Pm3̄m phase
has been evaluated at several hydrostatic pressures up
to 150 GPa. Generally, the phonon frequencies increase
with increasing pressure. Figure 2 shows the pressure de-
pendence of the soft mode frequencies at the R and M
points, which lower with pressure. It indicates that the or-
thorhombic Pmnb phase will become more distorted from
the cubic phase when increasing the pressure. This is con-
trary to the soft mode T1u(TO) at the Γ point, which
increases with pressure. Hence, the P4mm phase is not
expected to become stable at high pressures.

Fig. 2. Pressure dependence of the soft modes in the Pm3̄m
structure.

3.2 Symmetry relationships

An irreducible representation of a soft mode induces a
list of space subgroups. Such group-subgroup relationships
provide the unit cells of low symmetry phases, and the mu-
tual orientations of the parent and resulting phases. Fur-
thermore, since one knows the polarization vector of the
soft mode in the parent phase, one may displace atoms to
directions indicated by the calculated polarization vector,
and hence distort the parent structure towards the result-
ing one. Only the displacement amplitudes and the new
lattice constants require optimization.

The Pm3̄m cubic structure of MgSiO3 is considered as
a parent phase. The Pm3̄m space group can be lowered by
the irreducible representations of the soft modes according
to the following subduction diagrams [25]:

Pm3̄m(Z = 1)→ (R+
4 , e1 = e2 6= 0, e3 = 0)

→ Imma(Z = 2) (1)

Pm3̄m(Z = 1)→ (R+
4 , e1 = e2 = 0, e3 6= 0)

→ I4/mcm(Z = 2) (2)

Pm3̄m(Z = 1)→ (M+
3 ,k

(M)
xz = k(M)

yz = 0,k(M)
xy 6= 0)

→ I4/mbm(Z = 2). (3)

There is only one arm of the irreducible star of the repre-
sentation R+

4 of Pm3̄m. The ray representation of R+
4 is

three-dimensional. Hence, the order parameter has three
components. In the first case, equation (1), two equal
components of the R+

4 order parameter condense, while
in the second case, equation (2), only one component
of R+

4 is involved. The irreducible star of M point con-
sists of three arms, but the relevant ray representation
M+

3 is one-dimensional. The symmetry reduction, equa-
tion (3), is due to a condensation of a single arm k(M)

xy of
the M irreducible star. Except for the above mentioned
low-symmetry phases, there are a few other possibilities.
However at the moment, we limit the discussion to the
above three space groups, since only these are necessary
to consider for the stable orthorhombic Pmnb phase.
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Fig. 3. Space group relationships of the MgSiO3 structures
studied in this article. The Pm3̄m is the parent perovskite
structure. The Imma and I4/mcm, and P4/mbm space groups
are the subgroups of Pm3̄m, induced by irreducible repre-
sentations labelled by wave vectors of the high-symmetry
points R, and M, respectively. The orthorhombic space group
Pmnb = P4/mbm ∩ Imma contains common symmetry ele-
ment of P4/mbm and Imma space groups. The Pmnb space
group is equivalent to Pbnm one [5].

The group-subgroup relationships are shown in
Figure 3. There one sees that the common symmetry el-
ements of one space group from the R point and of the
space group from the M point create another orthorhom-
bic space group Pmnb. Hence, their intersection gives

P4/mbm(Z = 2) ∩ Imma (Z = 2) = Pmnb (Z = 4). (4)

The Pmnb phase is a result of simultaneous condensation
of the two mentioned soft modes, one at the R and a
second at the M point.

4 Phonon dispersion curves of low-symmetry
phases

We have built up supercells (see Tabs. 1, 2 and 3) cor-
responding to low-symmetry space groups of I4/mcm,
Imma, P4/mbm and Pmnb. The structures are optimized
at zero-pressure. The resulting lattice constants, unit cell
volumes, atomic positions and ground state energies are
collected in Table 2. Using these optimized structures, the
Hellmann-Feynman forces are calculated for the displace-
ments listed in Table 3. Note the rather large number of
independent force constant’s parameters. The force con-
stants are fitted to the Hellmann-Feynman forces. Their
values diminish with distance between involved atoms.
The largest ones are the on-site (zero-distance) constants.
The force constant elements at the supercell surfaces are
two orders of magnitude smaller than the on-site ones.
Such a decrease of the force constants as a function of a
distance is quite sufficient to get phonon frequencies at all
wave vectors with an appreciable accuracy. We remind the
reader that according to the direct method, the phonon
frequencies at special k-points, listed in Table 2, are ob-
tained exactly, even if the interaction range exceeds the
supercell size.

Fig. 4. Phonon dispersion relations of MgSiO3 for the body-
centered tetragonal I4/mcm structure.

Fig. 5. Phonon dispersion relations of MgSiO3 for the body-
centered orthorhombic Imma structure.

Figures 4–7 show the phonon dispersion relations. All
these curves are calculated along the same high-symmetry
lines of the reciprocal lattices. We use the conventional no-
tation for the high-symmetry points in a given Brillouin
zone [28]. However, in brackets we quote the correspond-
ing high-symmetry point of the cubic Brillouin zone, from
which a given high-symmetry point of the low-symmetry
phase arises. Such a presentation of the dispersion curves
allows comparison of phonons in different reciprocal lat-
tices. The notation of reciprocal lattice directions in Fig-
ures 1 and 4–7 are given in terms of the reciprocal lattice
vectors defined in Table 4. The majority of studied crys-
tals exhibit soft modes. Their values are given in Table 5.

4.1 Low-symmetry phase I4/mcm

The structural data of the supercell optimized within
the constraints of the I4/mcm space group are given in
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Table 4. Reciprocal lattice vectors g1, g2, g3 (in Å−1) of the studied structures. Any wave vector k can be expressed as
k = q1g1 + q2g1 + q3g3, where (q1, q2, q3) are the wave numbers. The lattice directions shown in Figures 1 and 4–7 on the
phonon dispersion relations are given in terms of (q1, q2, q3).

Space group g1 g2 g3

Pm3̄m (0.2891, 0.0000, 0.0000) (0.0000, 0.2891, 0.0000) (0.0000, 0.0000, 0.2891)

I4/mcm (0.0000, 0.2073, 0.1445) (0.2073, 0.0000, 0.1445) (0.2073, 0.2073, 0.0000)

Imma (0.0000, 0.1457, 0.2109) (0.2039, 0.0000, 0.2109) (0.2039, 0.1457, 0.0000)

P4/mbm (0.2075, 0.0000, 0.0000) (0.0000, 0.2075, 0.0000) (0.0000, 0.0000, 0.2885)

Pbnm (0.1469, 0.0000, 0.0000) (0.0000, 0.2051, 0.0000) (0.0000, 0.0000, 0.2123)

Table 5. Soft mode frequencies in THz and the high-symmetry points at which the soft modes occur. In brackets are given the
symbols of high-symmetry points of the original simple cubic Brillouin zone.

Space group Pm3̄m (O1
h) I4/mcm (D18

4h) Imma (D28
2h) P4/mbm (D5

4h) Pmnb (D16
2h)

High-symmetry R, M Γ (R) X(M) Z(R) None

point

Frequency in THz i11.20, i11.13 i8.67 i6.23 i9.42 None

Fig. 6. Phonon dispersion relations of MgSiO3 for the tetrag-
onal P4/mbm structure.

Table 2. Its ground state energy is only −0.7674 eV/per
cubic unit cell lower then that of the cubic perovskite
structure. The phonon dispersion relations have also been
calculated. They indicate that the I4/mcm phase is still
unstable, since it possesses a soft mode of Eg symmetry
at the Γ point, shown in Figure 4. This soft mode can
further lower the symmetry to C2/c (C6

2h) (Z = 2), or
C2/m (C3

2h) (Z = 2), or P 1̄ (C1
i ) (Z = 2) space groups.

However, we have not explored these possibilities, since
they do not lead to the Pmnb phase found stable in this
work, and suggested by the experiment.

4.2 Low-symmetry phases Imma and P4/mbm

The structural data of the supercells optimized under con-
straints of the Imma and P4/mbm space groups are given

Fig. 7. Phonon dispersion relations of MgSiO3 for the stable
orthorhombic Pmnb phase [4].

in Table 2. The phases Imma and P4/mbm are the re-
sults of the condensation of the soft modes at the R and
M points of the cubic Brillouin zone, respectively, equa-
tions (1, 3). The ground state energy of the Imma struc-
ture is considerably lower, than that of P4/mbm. The
phonon dispersion relations are calculated and shown in
Figures 5 and 6, respectively. Both figures still contain soft
modes. However, the Imma crystal, which is a result of the
condensation of a soft mode at the R point, shows a soft
mode at the X point of the body-centered orthorhombic
Brillouin zone. This X point originates from the M point
of the cubic Brillouin zone. Thus, the Imma phase has a
tendency to deform further.

The reverse situation is observed in the P4/mbm
phase. There, the P4/mbm structure arises as a result
of the condensation of a soft mode at the M point in
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the cubic Brillouin zone. The P4/mbm phase still contains
a soft mode at the Z point in the tetragonal Brillouin zone,
which corresponds to the R point in the cubic Brillouin
zone. Therefore, the P4/mbm phase can further distort.
The two soft modes, one at the R point, second at the M
point drive the cubic MgSiO3 crystal to the orthorhombic
Pmnb structure.

4.3 Stable orthorhombic Pmnb phase

The optimized Pmnb structure is stable and it is distorted
from the cubic symmetry mainly by tilting the SiO6 oc-
tahedra. The Si atom is surrounded by six oxygens in oc-
tahedral coordination with bond lengths 1.7679, 1.7808
and 1.7861 Å, and bond angles 89.35◦, 88.40◦ and 88.41◦,
respectively. The small variations in the Si–O distance
and the small departure of the O–Si–O angles from 900

show that the SiO6 octahedron is quite regular. We re-
produce the observed structure very well. Our calculated
lattice constants and atomic positions are in good agree-
ment with the measured data [29–31] (see Tab. 2). The
calculated mean Si–O bond length of 1.7783 Å shows ex-
cellent agreement with the experimentally observed value
of 1.783 Å [29].

The calculated zero-pressure phonon dispersion rela-
tions of the stable orthorhombic Pmnb crystal are shown
in Figure 7. The striking feature is that the optic modes
are limited to the frequency interval 4.0−26.2 THz. Below
4.0 THz only acoustic modes are present. The disconti-
nuities seen at the Γ point are due to the LO/TO split-
ting. By symmetry all modes are singly degenerate. In Ta-
ble 6 we give the optic phonon frequencies corresponding
to the Γ point. The Ag, B1g, B2g and B3g modes are Ra-
man active, while the transverse optic phonons B1u(TO),
B2u(TO) and B3u(TO) are infrared active. The frequen-
cies of the longitudinal components B1u(LO), B2u(LO)
and, B3u(LO) are not given in Table 6. The Raman scat-
tering measurements [7,32–35] provide the phonon fre-
quencies, however, the experimental symmetries of these
modes have not been established. Therefore, we cannot
assign the modes uniquely and we have not performed it.

For completeness of the lattice dynamics we show in
Figure 8 the total and partial phonon density of states
for Mg, Si and O atoms. The spectra are normalized to 1,
1
5 , 1

5 and 3
5 , respectively. Figure 8 shows below 4.0 THz

an exceptionally low density of states. This means that
in this region the acoustic modes contribute very little
to the phonon density of states. The Si and O atoms vi-
brate in the modes of the same frequencies. However, the
Mg atoms vibrate preferentially at lower frequencies, al-
though the mass of Mg is only slightly lower than that
of Si. This effect is a direct consequence of the strong
Si–O bonding, and weaker coupling to Mg atoms. Qualita-
tively similar phonon density of states have been obtained
from the molecular dynamics simulation at T = 300 K
[14] using phenomenological potentials. The frequency in-
tervals of the distributions are the same. All density of
states start at about 4 THz and vanish above 26 THz. The

Table 6. Phonon symmetries and frequencies at the Γ point
for orthorhombic Pmnb phase of MgSiO3 at zero pressure. Lon-
gitudinal mode frequencies B1u(LO), B2u(LO), B3u(LO) are
not listed.

B3u(TO) 4.72 B3g 14.75

Au 5.41 Au 14.84

B2g 6.91 Ag 14.85

B2u(TO) 7.16 B1u(TO) 15.15

Ag 7.39 B2u(TO) 15.19

Au 7.60 B2g 16.11

B1u(TO) 7.62 B1g 16.32

B3g 7.96 Ag 16.72

Ag 8.23 B1u(TO) 16.98

B1g 8.60 B1u(TO) 17.72

B3u(TO) 8.74 B3u(TO) 18.10

B1u(TO) 9.07 B2u(TO) 18.18

B3g 9.59 B3g 18.37

B2u(TO) 9.70 Au 18.50

B1g 10.35 B2g 18.56

Ag 10.87 Ag 19.44

B3g 10.97 B3g 19.47

Au 11.02 Au 20.55

B2u(TO) 11.40 B1u(TO) 21.02

Au 11.47 B3u(TO) 21.64

Ag 11.52 B3u(TO) 22.33

B2u(TO) 12.77 B2u(TO) 22.43

B1g 12.86 Au 22.87

B2g 12.88 B1u(TO) 23.79

B1u(TO) 13.00 B2u(TO) 24.24

B3u(TO) 13.55 B1g 24.56

B1u(TO) 13.73 B3g 25.04

B3u(TO) 14.38 B2g 25.64

B2u(TO) 14.53

partial density of states for Mg has a very low intensity
above 16 THz.

5 Discussion

We have presented the ab initio calculations of the struc-
tural and dynamical properties of the distorted perovskite
structures of MgSiO3. Four derivatives from cubic per-
ovskite structures were checked against stability, using
the phonon dispersion relations. This analysis assures us
that the experimentally observed Pmnb structure is a re-
sult of the condensation of two soft modes, one at the
M, and a second at the R point of the cubic Brillouin
zone. The soft mode at the M point leads to the P4/mbm
unstable structure where the SiO6 octahedra are rotated
around the z-axis by 15.3 degrees. The soft mode at the R
point, in turn, reduces the symmetry to the Imma unstable
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Fig. 8. Total and partial phonon density of states for Mg, Si and O atoms. The spectra are normalized to 1 and 1
5
, 1

5
, 3

5
,

respectively.

structure, by rotating the SiO6 octahedra around x and y
axes. Such a SiO6 rotation is coupled to the lattice strain
and causes 5.8% reduction of the crystal volume.

The phases Imma, I4/mcm, P4/mbm and Pm3̄m are
also good candidates to become stable disordered phases
at elevated temperatures. The orthorhombic Pmnb phase
has the lowest ground state energy. The smallest ground
state energy excess of 0.2512 eV per cubic unit cell
(583 K/atom) occurs for the Imma phase. For the tetrago-
nal I4/mcm and P4/mbm phases these excesses of energies
are three times higher. If a transformation from the Pmnb
phase to the remaining phases should occur, then all these
phase transitions will be of a displacive type. This asser-
tion follows from the fact that in all studied structures
the local atomic potentials possess a single minimum. We
see this effect, since all the on-site force constants, trans-
formed to a diagonal form, consist of positive parameters
only. A disordered phase would require local potential with
two, or more local minima. In this case some curvatures
of the local potentials, which are equal to the on-site force
constants, will be negative.

The calculated phonon dispersion relations, which con-
tain the soft modes and correspond to the unstable phases,
have as a rule slightly higher maximal optic phonon fre-
quencies. These modes correspond to the internal vibra-
tions of the SiO6 octahedra. Indeed, the unstable phases
remain in a strained state kept by the imposed symmetry
elements, and hence the vibrational frequencies slightly
increase.

The calculations for the cubic phase disclose along the
R–M line of the cubic Brillouin zone a dispersion-less soft

branch. Such a behaviour has already been noticed in the
phenomenological calculation of CaSiO3 [12]. This prop-
erty could lead to a number of high-commensurate phases
with coexisting different characteristic modulation wave
vectors. The precise pathway of such a transition will be
sensitive to the anharmonic interactions and to the stress
field and temperature of the sample. This topic remains
open.
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